Übungen Analysis I:Übungszettel 4

Aus Truth-Quark

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(a))
Zeile 4: Zeile 4:
==Aufgabe 2==
==Aufgabe 2==
===a)===
===a)===
-
<math>M_1\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon 0 \le x \right\rbrace</math><br />
+
<math>M_1\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon 0 \le x \right\rbrace</math> Graue Fläche<br />
-
<math>M_2\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon x \le -y \le -x \right\rbrace</math><br />
+
<math>M_2\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon x \le -y \le -x \right\rbrace</math> Rote Fläche<br />
-
<math>M_3\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon y = -x \right\rbrace</math><br />
+
<math>M_3\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon y = -x \right\rbrace</math>Schwarze Gerade<br />
-
<math>M_4\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon (x-2)^2 + y^2 = 1^2 \right\rbrace</math><br />
+
<math>M_4\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon (x-2)^2 + y^2 = 1^2 \right\rbrace</math>Grüner Kreisrand<br />
<ggb_applet width="100%" height="500"  version="3.2" ggbBase64="UEsDBBQACAAIADuvpzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VnNcts2ED43T4HhqT1IJvjPGckZ2UlnMpM0nXGaQy8ZkIQo1BRJk6BN+Xn6Jn2xLn4okbKjUHLSiTPlBeQCXOx++2GxIGcv23WGbmlVsyKfG3hqGojmcZGwPJ0bDV9OAuPl+YtZSouURhVBy6JaEz437KllCHnDzl/8NKtXxR0imRzykdG7ubEkWU0NVJcVJUm9opQP5KRpWcZItXkf/UVjXu86lJI3ednALLxqQBavk7es7h7P5IRlxvgrdssSWqGsiOeG54LpcPeRVpzFJJsbjqkk1tyw9jpBZIveVVGx+yLnYvhO+RIkCNXsngIilpDNzqSjM9rEGUsYyYUz0g4YhNAdS/hqbgShBSopS1dgq4tdpS0uiiq52tScrlH7J60KMMd3pj4OvcB3PQ/7NgxFG93lWVPH8W3TC7FjBXYIGILBwhIzmJqhbTqe5Xp+6IU+vPT5Pjk3vb2inEMsa0RaWneAphVL+vdv6osiS7YxKAuW80tS8qaSNLC16IpvxGSAWyV8XORpRrUMHI9XNL6OivZK4WYr1R82pXxFmhOll0VWVKgSEQGfU91GqpVjhJ3bUaYcY8oRWodQuu3HAvFUt5Fq5aiM5co07TfunMZmNw2rkRCAcsHeDo6MRBTI0BqoyRl/q54MBKy51q5i9cJvzTqCZdPnzVYnflQnG+hko5TOzvYoN7umVU4zRawcQtsUTY1uBYFV9KQlCY3ZGh5Vh8aEiHj9ARYoaULTinaWq1WnEJO9Zp+8e+LZWWeEsKEGW2MO6QP84cIXsbo5rCxxlxAuJGLpZHRNYV1xSQh4j8VbZFbGMGZ8BcjktK4lsdQbXeBkqilk1tjDt+c/9O84YloDprlYZJlyRcCbqaVZl5ENJJK+51LpuyIZ4kFywFU6C+u5FBpE5EpKE508ueY7KkGlXD09s8Z5CAmE5rfgX1HVCLWm1rwxxXRwc99JWjw3JlK0wVp0r2+kIrC0Yi1adOMX3aiFyH/yxtY6Fw6osuSdq0TKlJtc2VsrmoKnMVtC5BQ1VUhFcFvI87XYQ1QwELgNG0kLCC1/bn9Bc9TKV4YkWDa5JM4ugiN48BgNdN7SWnYLsk+DYSrZMcD8fghgjoA11bCmCtYJNGOQTf9HdoBsXKzXJE9QTtbQ/WsHl9DEROmBiCmxJmKJYVNcwgRi9RwrGt6NLJV+rfXL4ShHhMM+NeF1W+uYiFiHIjLGvqNBXY4G9eZIUG++F1AP0vxpoL7JOWzbJNsDteyDeghTchjTvFnTqrcxEzkPmN9oJ9yp+dr/EoSPp4kOQbkf72E4ehvGB0DEHYjWaSDejAUxOg7EaB/EyQ+B4gJOdnsIrh5Atcz++RsOBqvjENu+tQecPcUOdkPLc203CP3QPrwZYdfuoYMf7K4DGwQYWwPiE7fLMZlk/HaJD+WRp22Xsq6vUdvVll352DdkjPf7BSJbw8E8Zvww1vI0ucVpYTy57JCr4gCS3n+BpNkh2eWP+14trg7Q4muBYvIxAF38YABNTkJomH1+L7JN+qC4WKgUfqFyt/NI7oZTdEbja6wGkk9YDY3kDZyGEmjgLCS+RMFB6BIab268Opy+Sm1LF47tHN8uiVimow61oo10O0x1Y0uSz7Owpql42lUDn051aUjXk3w6krM71lkd2Tbd+Vmfmr9OlpPsygTrRVlR1VQWpQ8/yVxTWoqPYe/zDxXJa/EdVY3pfeoZGYfoK8XhMxXGtwkDngY4CIPQMW3XcQPXc19PsKUSZgjXNNxdts4M4fByXgfPN2jJ8wvZpL90/Knlu6Hre1CCBbZjeSp896Iq24vTcw4TfYZhsqee7Yd+EJi+GWIf29uVtYsgxMmCU8czisywBro8rQbyFOKeAtx7At7bP1ZD+wcp7pE81it3dpf19WrDV88Al34a2YfIOw6Ks/4PB/lfTv+YPP8XUEsHCEAeseOsBQAAyhwAAFBLAQIUABQACAAIADuvpzxAHrHjrAUAAMocAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAA5gUAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
<ggb_applet width="100%" height="500"  version="3.2" ggbBase64="UEsDBBQACAAIADuvpzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VnNcts2ED43T4HhqT1IJvjPGckZ2UlnMpM0nXGaQy8ZkIQo1BRJk6BN+Xn6Jn2xLn4okbKjUHLSiTPlBeQCXOx++2GxIGcv23WGbmlVsyKfG3hqGojmcZGwPJ0bDV9OAuPl+YtZSouURhVBy6JaEz437KllCHnDzl/8NKtXxR0imRzykdG7ubEkWU0NVJcVJUm9opQP5KRpWcZItXkf/UVjXu86lJI3ednALLxqQBavk7es7h7P5IRlxvgrdssSWqGsiOeG54LpcPeRVpzFJJsbjqkk1tyw9jpBZIveVVGx+yLnYvhO+RIkCNXsngIilpDNzqSjM9rEGUsYyYUz0g4YhNAdS/hqbgShBSopS1dgq4tdpS0uiiq52tScrlH7J60KMMd3pj4OvcB3PQ/7NgxFG93lWVPH8W3TC7FjBXYIGILBwhIzmJqhbTqe5Xp+6IU+vPT5Pjk3vb2inEMsa0RaWneAphVL+vdv6osiS7YxKAuW80tS8qaSNLC16IpvxGSAWyV8XORpRrUMHI9XNL6OivZK4WYr1R82pXxFmhOll0VWVKgSEQGfU91GqpVjhJ3bUaYcY8oRWodQuu3HAvFUt5Fq5aiM5co07TfunMZmNw2rkRCAcsHeDo6MRBTI0BqoyRl/q54MBKy51q5i9cJvzTqCZdPnzVYnflQnG+hko5TOzvYoN7umVU4zRawcQtsUTY1uBYFV9KQlCY3ZGh5Vh8aEiHj9ARYoaULTinaWq1WnEJO9Zp+8e+LZWWeEsKEGW2MO6QP84cIXsbo5rCxxlxAuJGLpZHRNYV1xSQh4j8VbZFbGMGZ8BcjktK4lsdQbXeBkqilk1tjDt+c/9O84YloDprlYZJlyRcCbqaVZl5ENJJK+51LpuyIZ4kFywFU6C+u5FBpE5EpKE508ueY7KkGlXD09s8Z5CAmE5rfgX1HVCLWm1rwxxXRwc99JWjw3JlK0wVp0r2+kIrC0Yi1adOMX3aiFyH/yxtY6Fw6osuSdq0TKlJtc2VsrmoKnMVtC5BQ1VUhFcFvI87XYQ1QwELgNG0kLCC1/bn9Bc9TKV4YkWDa5JM4ugiN48BgNdN7SWnYLsk+DYSrZMcD8fghgjoA11bCmCtYJNGOQTf9HdoBsXKzXJE9QTtbQ/WsHl9DEROmBiCmxJmKJYVNcwgRi9RwrGt6NLJV+rfXL4ShHhMM+NeF1W+uYiFiHIjLGvqNBXY4G9eZIUG++F1AP0vxpoL7JOWzbJNsDteyDeghTchjTvFnTqrcxEzkPmN9oJ9yp+dr/EoSPp4kOQbkf72E4ehvGB0DEHYjWaSDejAUxOg7EaB/EyQ+B4gJOdnsIrh5Atcz++RsOBqvjENu+tQecPcUOdkPLc203CP3QPrwZYdfuoYMf7K4DGwQYWwPiE7fLMZlk/HaJD+WRp22Xsq6vUdvVll352DdkjPf7BSJbw8E8Zvww1vI0ucVpYTy57JCr4gCS3n+BpNkh2eWP+14trg7Q4muBYvIxAF38YABNTkJomH1+L7JN+qC4WKgUfqFyt/NI7oZTdEbja6wGkk9YDY3kDZyGEmjgLCS+RMFB6BIab268Opy+Sm1LF47tHN8uiVimow61oo10O0x1Y0uSz7Owpql42lUDn051aUjXk3w6krM71lkd2Tbd+Vmfmr9OlpPsygTrRVlR1VQWpQ8/yVxTWoqPYe/zDxXJa/EdVY3pfeoZGYfoK8XhMxXGtwkDngY4CIPQMW3XcQPXc19PsKUSZgjXNNxdts4M4fByXgfPN2jJ8wvZpL90/Knlu6Hre1CCBbZjeSp896Iq24vTcw4TfYZhsqee7Yd+EJi+GWIf29uVtYsgxMmCU8czisywBro8rQbyFOKeAtx7At7bP1ZD+wcp7pE81it3dpf19WrDV88Al34a2YfIOw6Ks/4PB/lfTv+YPP8XUEsHCEAeseOsBQAAyhwAAFBLAQIUABQACAAIADuvpzxAHrHjrAUAAMocAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAA5gUAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
[[Kategorie:Übungen_Analysis_I]]
[[Kategorie:Übungen_Analysis_I]]

Version vom 20:21, 7. Mai 2010

Aufgabe 1

Please install Java to use this page.

Aufgabe 2

a)

LaTeX: M_1\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon 0 \le x \right\rbrace Graue Fläche
LaTeX: M_2\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon x \le -y \le -x \right\rbrace Rote Fläche
LaTeX: M_3\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon y = -x \right\rbraceSchwarze Gerade
LaTeX: M_4\colon=\left\lbrace \mathbb C \ni z=x+ \mathrm i \cdot y \colon (x-2)^2 + y^2 = 1^2 \right\rbraceGrüner Kreisrand

Please install Java to use this page.